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Abstract

We present gg: a system for executing interdependent soft-
ware workflows across thousands of short-lived “lambdas”
that run in parallel on public cloud infrastructure. The
system includes three major contributions: (a) an inter-
change format for representing “thunks”—programs and
their complete data dependencies—that can be executed
anywhere; (b) a system to automatically infer the depen-
dency tree of a software build system and synthesize it
as a directed acyclic graph of thunks, by replacing stages
of the system with “models” that capture dependencies
with fine granularity; and (c) an execution engine that re-
solves thunks recursively on public functions-as-a-service
infrastructure with thousand-way parallelism.

We found that gg outperforms existing schemes for
accelerating compilation—with large projects such as
inkscape and LLVM, gg was 3.7X to 4X as fast as out-
sourcing compilation to a remote 64-core machine, and
1.2X% to 2.2X as fast as running make -3j64 locally on the
64-core machine itself—and that the thunk abstraction is
applicable to a broad range of tasks.

1 Introduction

The scale and elasticity of cloud platforms gives us an
opportunity to dramatically rethink many computer appli-
cations. As cloud-computing platforms have developed,
they have invariably become more fine-grained: for exam-
ple, cloud vendors today offer hyper-elastic “serverless
computing” platforms that can launch thousands of Linux
containers within seconds [4, 21,/32], and all the major
cloud vendors have switched to one-minute or ten-minute
minimum billing increments for VMs [7, 18, 22]. Re-
searchers have already taken advantage of these platforms
to implement hyper-elastic versions of compute-intensive
applications including video encoding [21] and MapRe-
duce [32].

Making hyper-elastic platforms broadly available to
more applications, however, will require general APIs and
systems for accessing them, as opposed to the application-
specific systems designed in prior work. To this end, we
propose gg, a system for efficiently and easily captur-
ing a parallelizable application consisting of a DAG of

processes and executing it on serverless platforms.

Unlike previous work, gg can be applied to arbitrary
workflows of Unix-like processes, such as software builds,
scientific workflows, and video-processing pipelines. We
first evaluate gg on one of the most challenging and well-
studied parallelization problems: software builds. In this
setting, we show that gg can extract more parallelism out
of builds than traditional parallel and distributed build
tools such as make, distcc, and icecc [16, 19, 29],
while inferring the dependencies between build steps au-
tomatically, and that it performs up to 3.9 better than
outsourcing to a long-running 64-core build server.

These gains are due both to increased parallelism (gg
can exploit thousand-way parallelism from serverless in-
frastructure, and can infer parallelism opportunities not
found in the original Makefile) and fewer network round
trips, because gg keeps track of intermediate dependen-
cies in the cloud and does not need to fetch intermediate
build products back to the local machine. In addition, we
show that gg can be used to implement video processing
and MapReduce workloads similar to those in ExCam-
era [21] and PyWren [32].

To achieve these results, gg is built on two key con-
cepts. First, gg represents work graphs through an ab-
straction called thunks, which are self-contained units of
computation specifying both the executable to run and its
dependencies. Second, gg provides a novel mechanism
for automatically capturing an accurate dependency graph
from an existing application, called model substitution.
We briefly outline these concepts in turn.

Thunks: gg’s thunks are self-contained units of com-
putation that specify both an executable to run for a work-
flow step and its dependencies and environment. For ex-
ample, in a build system, the thunk for compiling a single
C source file will reference, as dependencies, the content
hashes of the source file, the header files it includes as
dependencies, and the compiler binary itself. In a video
processing job, a thunk might specify one chunk of the
video and the encoder binary that will operate on it.

Because thunks identify their complete functional foot-
print, gg can evaluate them in diverse environments, in-
cluding a local sandbox or an AWS Lambda function.
Each thunk is named canonically in terms of its computa-
tion task and dependencies (which can be other thunks),



which allows gg to memoize and reuse thunk results.

Model substitution: Although applications can spec-
ify a thunk graph directly, gg also provides a novel and
easy-to-use mechanism for capturing an accurate depen-
dency graph from an existing multi-process application,
called model substitution. In this mechanism, gg can sub-
stitute model programs for each CPU-intensive executable
invoked by a high-level driver process for the application
(e.g., make, cmake, ninja, or even a shell script), by sim-
ply placing them in the PATH. As the driver process runs,
these models execute only the minimal computation re-
quired to determine each execution’s dependencies; for
example, gg’s model for the C linker determines which
libraries will be consulted to produce the output file, but
does not actually link them. Each model program then
outputs a thunk representing that computation and its
inputs. We found that models are an effective way to au-
tomatically and correctly infer dependencies from large
legacy applications; for example, by including models for
just six common executables (gcc, g++, 1d, ar, ranlib,
and strip), gg can automatically capture the dependency
graphs of many large open-source projects.

We demonstrate gg through several example applica-
tions. First, to showcase a complex application that is
not supported by previous “serverless” systems, we used
gg to implement a parallel build accelerator. Builds have
traditionally been challenging to parallelize efficiently
for two reasons. First, to leverage parallelism, the build
tool needs an accurate and fine-grained description of the
dependencies (e.g., from a Makefile): overspecifying
dependencies will reduce parallelism, while underspec-
ifying them will lead to incorrect results. Second, cur-
rent parallel build-outsourcing tools, such as distcc and
icecc [16, 29], require many round trips between a mas-
ter server and its workers (e.g., to send back intermediate
build products), and perform poorly on a higher-latency
connection to a public cloud. In contrast, using model sub-
stitution, gg automatically discovers a fine-grained but
accurate dependency graph for a build simply by running
the existing build system (e.g. make). This sometimes
finds more parallelism than the build system has itself.
Then, gg’s execution engine allows it to upload all input
files and submit the execution graph without repeated
round trips, running with up to 1000-way parallelism.

1.1 Summary of results

gg on AWS Lambda outperforms existing parallel out-
sourced build systems running in the EC2 cloud, without
requiring changes to the program’s build system.

For example, compiling inkscape (a free-software
illustration tool) requires 33.5 minutes on one core of a 4-
core VM, and 5 minutes when using icecc to outsource
builds to a separate 64-core VM in the same EC2 region.

By contrast, gg can execute the same build system in 1.25
minutes on AWS Lambda, with each stage billed with
subsecond granularity.

Compiling LLVM (a toolkit for writing compilers) re-
quires 86 minutes on a single core, 4 minutes using icecc
to outsource to a 64-core VM in the same region, and
1.2 minutes with gg.

These gains come with a caveat: automatically infer-
ring dependencies in the first place requires running the
original build system (e.g. make) with the compiler and
other programs replaced with models. The build system
itself can become a bottleneck, especially if it involves
recursive make and many dependencies and the client ma-
chine is not well-endowed with CPU resources. On a cold
start, inferring the tree of dependencies for inkscape
required 2.5 minutes on the client machine (the 4-core
VM), and 2.75 minutes for LLVM.

Apart from software builds, we also use gg to imple-
ment a video processing workload similar to ExCam-
era [21] and a MapReduce engine similar to PyWren [32],
to show that gg’s thunk abstraction is general enough to
capture these applications.

In summary, we believe that the ability to divide com-
mon computational tasks into fine-grained tasks and exe-
cute them over hyper-elastic functions-as-a-service plat-
forms like AWS Lambda, Google Cloud Functions, IBM
OpenWhisk, and Azure Functions will become a new
foundational use of these platforms. gg offers general and
powerful mechanisms to achieve this for a common class
of applications—multi-process Unix-like applications. gg
is effective for a wide range of tasks ranging from “em-
barrassingly parallel” MapReduce to parallel builds with
complex, irregular dependencies.

gg is open-source software; we have posted an anony-
mous version for review at https://github.com/gg-anon.

2 Related Work

gg is related to several different classes of systems.

Workflow systems. gg treats computations as a DAG
of tasks, in a similar manner to Dryad [31], CIEL [39],
Spark [50], and many scientific workflow systems [35].
However, gg differs from these systems in two important
ways: its abstraction of a thunk to capture each task, and
the manner in which gg can build up the thunk graph from
an arbitrary (Unix-like) application using models.

gg’s thunk abstraction differs from tasks in typical
workflow systems in two ways. First, a thunk in gg is
a self-contained process invocation with all of its depen-
dencies captured, making it possible to take pieces of
unmodified multi-process applications (e.g., build scripts)
and execute them incrementally or in parallel on remote
computing infrastructure. Second, higher-order thunks
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allow gg to reference and analyze properties of derived
results without running the full computation (e.g., dedu-
plicating two references to the same higher-order thunk
or running a model program that can process a thunk to
determine the effect on a downstream computation).

gg’s model programs, meanwhile, are a novel way to
capture a dependency graph. By replacing each executable
with a model that can take thunks as input and only de-
termines which files a program invocation depends on,
gg can identify dependencies at a fine granularity within
existing applications, such as build scripts—sometimes
unlocking more parallelism than the original application
exposed. gg is not a build system itself and does not
require rewriting or replacing mechanisms such as the
Makefile or Bazel BUILD file; it seeks to work with ex-
isting software packages by automatically inferring depen-
dencies from the existing build system, then outsourcing
execution to serverless infrastructure.

Build systems and tools. Numerous build systems (in-
cluding Vesta [28], make [19], and Bazel [8]) and out-
sourcing tools (such as distcc [16], icecc [29], and
mrcc [37]) seek to incrementalize, parallelize, or dis-
tribute compilation to more-powerful remote machines.
The state of the art generally has two limitations that
gg tries to address: requiring a manually-specified de-
pendency graph, which creates problems if users over-
specify dependencies, and inefficient execution over a
high-latency network (large number of round trips).

Virtually all existing build systems analyze a manually-
specified configuration file, such as a Makefile or
Bazel’s BUILD script, to identify dependencies and en-
able incrementalization or parallelism. While this analy-
sis can be highly sophisticated [27], misconfiguring the
build will cause the system to run slower than necessary
(if unneeded dependencies are given).

Such misconfiguration is not uncommon: for example,
the popular automake tool processes subdirectories se-
quentially in order; in effect creating spurious dependency
edges that reduce the available parallelism. gg is able to
infer these dependencies accurately with fine granularity.
As we show in Section 4| gg (with 64-way parallelism)
outperforms make -3j64 (also 64-way parallelism) when
compiling FFmpeg and Mosh, by about a factor of two in
each case. The number of cores is the same, but gg is able
to unlock more parallelism from the underlying Makefile.

gg does require model programs to be designed for
every executable that will consume significant CPU re-
sources, and every executable that will be used “down-
stream” to process the output of such programs, but the
number of such executables is typically small (5-10), and
they are shared across many applications.

In addition, many existing remote compilation systems,
including distcc and icecc, send data between a master
node and the workers frequently during the build, e.g.,

retrieving each intermediate file back to the master. These
systems thus perform best on a local network, and add
substantial latency when building on more remote servers
in the cloud. In contrast, gg can upload all the build input
once and have thunks execute and exchange data purely
within the cloud, minimizing the impact of latency.

Caching of build products. ccache [9], whether alone
or in concert with distcc or icecc, allows for cached
compilations, reducing the time required for subsequent
compiles of files that have not changed. ccache’s main
limitation is that at present, it only caches single file com-
pilations [9], so steps such as multiple file compilations,
linking, or any other part of the build process are re-run.
Bazel also caches build products, but it will not detect if
a system include file has changed. In contrast, gg’s mem-
oization system is agnostic to the type of computation
being performed and captures all dependencies, sufficient
for diverse users to share a common cache (§3.4).

Incremental recomputation. Beyond build systems, au-
tomatic incremental computation has been proposed
for data flow systems [24, 45, 50] and relational
databases [10,25,/34]. gg applies this technique to thunks
representing arbitrary Unix-like processes and uses cloud
storage to efficiently cache and reuse computation results.

Process migration and distributed OSes. gg’s goal of
transparently running a process on remote infrastructure is
similar to that of distributed OSes [44,48,/49], VM migra-
tion [12, 40] and container services [17]. Snowflock [33]
combines VM cloning with distributed execution to accel-
erate parallel applications through a VM-fork abstraction
and shows that this abstraction works efficiently under
distcc. In gg, however, we chose to explicitly represent
the computation graph up-front in order to minimize the
number of network round trips and to enable incremental
computation and caching.

Cloud computing. ExCamera [21] uses AWS Lambda
to scale out video encoding and processing tasks over
thousands of serverless function invocations, while Py-
Wren [32] proposes a MapReduce implementation on
AWS Lambda. In contrast, gg allows leveraging server-
less computing platforms for a much broader set of work-
loads using the abstraction of thunks, including irregu-
lar execution graphs such as those that arise in a build
system. Moreover, gg automatically enables incremen-
tal re-execution when only part of the input data or the
program changes, as well as shared caching of input or
intermediate files among multiple users. gg’s thunks can
also be used to express video coding tasks or MapReduce,
as we show in Section/4.5]



3 Design and Implementation

Functions-as-a-service infrastructure presents a new
parallel-processing substrate: services like AWS Lambda,
Google Cloud Functions, and Azure Functions allow users
to invoke thousands of parallel threads with subsecond
startup times and subsecond billing. Although originally
intended for asynchronous Web microservices, recent
work has used such infrastructure to synchronously in-
voke thousands of threads at once, for tasks such as video
encoding [21] and data analysis [32].

gg is designed as a general system for representing
large workflows that can be executed on functions-as-a-
service infrastructure. The expectation is that users will
pursue a variety of “laptop extension” tasks, by taking a
computation that might normally run locally for a long
time (software compilation, interactive data exploration
and visualization, machine learning, video encoding and
filtering), and instead outsourcing it to thousands of short-
lived parallel threads in the cloud, in order to achieve
near-interactive completion time.

To explore this idea in concrete terms, we built a set of
components that transform one type of CPU-intensive job
(software compilation) into gg’s representation, so that
users can outsource builds to the cloud with thousand-
way parallelism—the equivalent of “make -3j1000”. The
following are the major components of gg:

1. The thunk abstraction for representing a morsel of
deterministic computation in terms of a function (the
hash of an x86-64 executable) and its complete func-
tional footprint: the arguments, environment, and
content hashes of all files it can access, some of
which may be the output of other as-yet-unevaluated
thunks. This component is agnostic to the environ-
ment where the thunk will be “forced” (meaning ex-
ecuted), and agnostic to the computation performed.

2. Software to infer a directed acyclic graph of inter-
dependent thunks from an arbitrary software build
system (whether make, cmake, ninja, bazel, etc.)
that makes use of a C or C++ toolchain (compiler,
linker, etc.). This component is specific to software
compilation.

3. Execution engines for forcing a thunk, and all thunks
that it depends on, recursively, in various environ-
ments: locally, outsourced to a remote computer, or
on functions-as-a-service infrastructure. These en-
gines also memoize thunk evaluation: they record
a correspondence between the hash of a thunk and
the hash of its output, and can short-circuit the later
forcing of the same thunk.

In total, these components are implemented in about
8,800 lines of C++. We describe each in turn.

3.1 Thunks: units of delayed deterministic
computation on data

In the functional-programming literature, a thunk is a
parameterless closure (a function) that captures a snapshot
of its environment for later evaluation [1]. The process
of evaluating the thunk—which requires first evaluating
any thunks that the thunk has captured, recursively—is
known as “forcing” the thunk.

gg’s goal is to outsource computations from the user’s
computer to thousands of functions in the cloud, in a
way that guarantees that the user will get the same an-
swer wherever the computation is run. To do this, we
designed a concrete realization of a self-contained unit of
computation—a thunk—in this context.

This representation has several design goals. First, it
needs to identify all the information necessary to execute
the computation. Because a cloud execution environment
may be a significant distance from the user, we believe
that simply exporting the user’s filesystem to the cloud
and allowing dependencies to be discovered dynamically,
one by one, would require too many round trips compared
with loading all dependencies upfront in one shot.

In addition, the thunk needs to be portable to a variety
of computing environments and to different functions-as-
a-service providers. It should identify inputs in a granular,
cacheable, content-addressed way, because some refer-
enced data may already be available in the cloud and some
may need to be uploaded. For any particular execution on
a particular dataset, there should be a canonical name for
the thunk, so that the thunk can be memoized and need
not be executed twice.

To satisty these requirements, gg represents a thunk as
a JSON document (Figure @ that contains:

1. The SHA-256 hash of an x86-64 ELF binary exe-
cutable using the Linux kernel ABIL.

2. A list of arguments and environment variables that
the executable will be invoked with.

3. The name of the output file. After the executable
has finished running, the contents of this file will be
considered the value of the thunk.

4. A list of “infiles”—the files that the program will
access. These include data files accessed by the pro-
gram, other executables invoked by it, and any shared
libraries loaded at startup time. Each infile is identi-
fied by:

(a) aname,

(b) the SHA-256 hash of its contents,
(c) the size in bytes, and

(d) its “order.”

An infile whose contents are known at the time the
thunk is created will have order zero, and the SHA-256



{ "function": { "exe": "/__gg__/g++",
"args": [ "-x", "cpp-output",
"preprocessed_output",
"_on,
"-specs=/__gg__/gcc-specs" 1,
"hash": "sJ.rkb5", 1},
"infiles": [
{ "filename": "preprocessed_output",
"hash": "KSwy9c",

"order": 1, },

{ "filename": "g++",
"hash": "sJ.rk55",
"size": "1197328",
"order": 0, },

{ "filename": "gcc-specs",
"hash": "wYsTb5z3",
"size": "10381",
"order": 0, },

{ "filename": "cc1",
"hash": "LuVgfa3",
"size": "23787992",
"order": 0, } 1,

"outfile": "compiled_output" }

Figure 1: An example thunk, describing the compilation stage
in a “Hello world” program, from preprocessed C to compiled
assembly. The preprocessed C code (the first infile, hash starting
with KSwy9c) is a thunk of order 1, making this a second-order
thunk. SHA-256 hashes have been shortened for display, and
some less-important fields have been omitted.

hash that identifies the file will be taken over its actual
contents. The resulting thunk is considered a first-order
thunk: a thunk that can immediately be executed because
its infiles are all actual files. A thunk may also be of higher
order, with one or more of its infiles taken as the output of
other (as-yet-unevaluated) thunks. In this case, the SHA-
256 hash is taken over the contents of the referenced thunk
(the JSON document), and the order of the referencing
thunk is one greater than the maximum order of any infile.

3.1.1 Execution

To force a thunk and retrieve its value, the execution
environment follows several steps:

1. Retrieve the infiles, each one identified by a hash
of its contents. These may come from any content-
addressed storage (e.g. a directory or database where
files are named by their hashes).

2. If the thunk is not a first-order thunk, then its non-
zero-order infiles must first be forced recursively
themselves. After this process completes, the origi-
nal thunk is then rewritten so that the higher-order
infiles are replaced with corresponding zero-order
infiles (whose contents are the result of forcing the
original infiles). This changes the contents of the
overall thunk so that it is now a first-order thunk.

3. The first-order thunk can then be looked up in a

"compiled_output", "-S",

cache (indexed by a hash of its contents) to see if its
value has already been memoized.

4. If not, the executable is run with the provided argu-
ments and environment variables—optionally in a
sandbox that enforces the boundaries of the thunk
and fails with an error if the executable attempts to
reference data not included in the thunk.

5. The contents of the output file are taken as the value
of the thunk.

We implemented the sandbox in about 800 lines of
C++, using the ptrace Linux system call. It exits with an
error if the program references any file not mentioned in
the thunk. It also prevents the use of system calls such as
getpid, gettimeofdaﬂ getcpu, and socket, which
could be used to introduce outside information. The sand-
box does not guarantee perfectly deterministic execution;
an executable can still call system calls such as brk, which
may return different results on different invocations. It is
more like a unit test to gain confidence that the executable
is not inadvertently accessing data outside the functional
footprint specified in the thunk.

A thunk is somewhat akin to an operating-system con-
tainer. Compared with Docker containers and similar
schemes, gg’s thunks are designed to be: (1) deterministic
and content-addressed, by naming the executable and all
its inputs by hash, (2) expressable in terms of other, lower-
order thunks as input files, (3) runnable within a cloud
function provided by functions-as-a-service infrastructure,
and (4) factorable—some infiles (like the compiler or sys-
tem libraries) may already be available in the cloud, and
those infiles should not need to be re-uploaded every time
the user wishes to force a thunk remotely.

3.2 Modeling compilation with thunks

Having designed a thunk abstraction to express the appli-
cation of an x86-64 executable to named data, we next
built a series of tools to infer a thunk for each output of
a software build system. These tools allow gg to be used
with most build systems: make, cmake, ninja, bazel,
raw shell scripts, etc.

The basic approach is to model each stage of the compi-
lation process with a program that understands the behav-
ior of the underlying program just enough so that when
the model is invoked, it can write out a thunk and quickly
exit. The resulting thunk must capture the future depen-
dencies of the underlying program with perfect recall
(every file referenced must be mentioned in the thunk), or
else forcing the thunk will fail. It should also capture these
dependencies with good precision, or else the thunk will
include unnecessary files that will need to be uploaded

IWe also link executables with a modified version of libc that pre-
vents use of the vDSO to get the time or CPU number without a syscall.



dirname.c string.h closeout.c stdio.h hello.c

dirname.i closeout.i hello.i

| l |

‘dirname.s‘ ‘closeout.s‘ ‘hello.s‘

‘dirname.o‘ ‘closeout.o‘

libc libhello.a hello.o

hello
(stripped)

Figure 2: Part of the DAG of thunks inferred with gg-infer
from the GNU hello example program. (Many system header
files and other dependencies omitted to simplify the diagram.)

when forcing the thunk on a remote machine. When the
thunk is created, all of the dependencies are captured and
copied to the object store: a directory in the filesystem that
contains each infile, named by the hash of its contents.

We built models for the GNU preprocessor, the gcc
and g++ compilers, the GNU assembler and linker, the
archiver (ar and ranlib), and for ancillary tools like
strip. Each of these models parses the command-line
arguments for the underlying tool, and writes to the same
output files that the real program would write to, but with
a reference to a thunk instead of the true output.

At runtime, the user can extract the dependency tree
for a software package by running gg-infer followed by
the build command, e.g., gg-infer make. This tool runs
the given command after changing the PATH environment
variable so the models (e.g. for gcc) replace the underly-
ing tools. An example DAG of thunks, inferred from the
GNU hello example program, is shown in Figure|2.

Build systems often include scripts that run in addition
to these standard tools (e.g. to generate configuration
header files), but typically such scripts run “upstream”
of the preprocessor, compiler, etc. These do not cause
difficulty for our approach, because the scripts are simply
run during the gg-infer step, and their output is then
captured in a thunk (e.g. by the preprocessor).

However, gg-infer must handle the case where the
build system tries to run or link against a thunk. Some-
times build systems do not simply run scripts: they first
compile a helper program and then execute it. This could
cause difficulties because if the file that should contain
the helper program is a thunk, the program will not be
able to be executed.

To deal with this case, our models instead write a thunk
“reference” to whatever files would be written by the un-

derlying tool. A thunk reference includes the hash of a
particular thunk, but is also valid syntax for another kind
of file. For example, the output of the linker is typically
an executable, so the output of the linker model is a thunk
reference that acts like an executable: it is a shell script
that includes the hash of the thunk. If executed, it will
force the thunk to compile the helper program and then
execute it. When modeling a compiler stage that produces
a library, the model writes a thunk reference that is a syn-
tactically valid linker script, in case the build system tries
to link against a build product.

In some cases, these references may not be sufficient;
for example, a build system might seek to bundle com-
piled output into a ZIP file, or compare compiled output
against a canonical reference and take action based on
whether it matches. To handle this case, we built a wrap-
per tool called gg-mock that uses ptrace to detect if a
“non-thunk-aware” program opens a thunk reference for
reading; if so, it pauses execution of the thread in question
until the thunk can be forced and the thunk reference can
be replaced with the value of the thunk. Models indicate
they are “thunk-aware” by trying to open a nonexistent
file that has a canonical filename; gg-mock takes this as
a signal to stop tracing the program.

3.2.1 Implementation details of models

Tools like strip and ranlib read a single file that is
named on the command line and modify it in-place; these
models are trivial.

Tools like gcc are more difficult. We model the com-
piler as a sequence of up to four stages: preprocess-
ing, compiling, assembling, and linking. The gcc model
parses the command-line options and determines which
of the four stages will be executed. (Arguments like -E,
-8, and -c cause the compiler to stop after preprocessing,
compiling, or assembling.) The model constructs separate
thunks for each stage, so that compiling two different
source files may still result in a memoization hit if, for
example, their preprocessed output is the same.

We torture-tested the gcc and g++ models by run-
ning them against an array of free-software programs,
including the 11vm toolkit, applications like inkscape,
ffmpeg, and OpenSSH, and the Linux kernel. These build
systems use a wide variety of gcc options, which the mod-
els now handle.

To model the preprocessor, the thunk must include the
full list of dependencies, including every file included
with a #include directive, recursively. The model uses
a feature of the real preprocessor (gcc -M) to obtain this
list. The model locally caches the output of this command,
keyed by the hashes of the contents of the referenced files.
If none of those files has changed, the preprocessor model
can safely reuse the previous dependency list. We use a



similar technique to model the linker.

The models also cache the hash of referenced files by
inode number and nanosecond timestamp; if these have
not changed, the models do not re-hash the input file.

3.2.2 Building a canonical toolchain

gg seeks to execute thunks efficiently either locally or in
the cloud (on a remote VM or functions-as-a-service infra-
structure). The thunk’s functional footprint includes the
hashes of data referenced by the executable (e.g. source
code), but also the executable itself. We built canonical
x86-64 versions of the GNU C/C++ toolchain that can
run efficiently on the user’s machine but will also be avail-
able in the cloud. This toolchain includes the following
programs from GCC 7.2.0 and binutils 2.2.8: ar, as, cc1,
cclplus, collect2, gcc, gt++, ar, ranlib, 1d, nm, and
strip.

We did not modify the tools, but we statically linked
them against the mus1 minimalist standard C library to
reduce their total size. Additionally, we modified musl
to make the programs thunk-aware. At startup, the C
library checks for an environment variable that contains
the thunk, parses the thunk’s list of infiles, and makes a
correspondence table between names and hashes. Later,
when the program calls open or another library function
that references a filename, the C library replaces this with
a reference to the file’s true name (the SHA-256 hash
of its contents). This layer of indirection allows these
programs to become transparently thunk-aware, without
modifying the filenames visible to the program, which
would have affected debugging and diagnostic output.

We ensure the correctness of this indirection layer, and
of the models, by compiling many projects two ways:
normally with the toolchain, and by modeling the same
steps and then forcing thunks inside the gg sandbox. gg’s
regression tests verify that both methods succeed and
produce the same output.

3.2.3 Whole-tree optimizations of a DAG of thunks

By first extracting the entire chain of operations that pro-
duces the compiled output, gg’s approach opens up the
possibility of optimizations that apply to the whole DAG
of thunks. For example:

1. Many build systems run ranlib to generate an
archive index, but this step is a null operation if
it comes after ar s (to create the archive)—which
it often does. In that case, this stage can be safely
skipped. (Currently, we do this optimization manu-
ally.)

2. The -g (debugging) flag can be eliminated from the
compiler’s command-line if the eventual output is
going to be stripped.

3. Path subgraphs are linear chains of thunks, where
the output of each thunk is the input to the next.
These can be compressed into one thunk, or effi-
ciently forced in the same cloud function, because
the dependencies will already be available and will
not have to be retrieved again from storage.

3.3 Forcing thunks locally or in the cloud

We built systems to force thunks in three environments:
locally on a Linux computer, remotely to a computer run-
ning a persistent webserver, and on a commercial cloud-
functions service (AWS Lambda). These systems, and
the thunk abstraction, are agnostic to the process being
executed and whether it is related to software compilation
or not. The models in the previous section, however, are
specific to software compilation.

The user starts with a thunk that represents the desired
output of a large computation. If it is an executable thunk
reference, they can simply execute it to force the thunk
and then run the resulting program; otherwise they can run
gg-force to explicitly force it. The method of forcing
depends on which environment the user has selected.

3.3.1 Executing thunks locally

In this mode, gg-force reads the thunk in question and
recursively builds the DAG of thunks that it depends on.
These thunks are all identified by hash and located in the
object store (the local directory that stores infiles named
by hash). All first-order thunks can be executed in parallel.
By default, gg only runs as many parallel thunks as the
user has cores.

When each thunk completes, gg-force writes a mem-
oization entry to the filesystem, recording that a thunk
with hash x evaluated to an output of hash y. Any thunks
that depended on the completed thunk x are rewritten to
refer to y, and their order is recalculated (as one plus the
maximum order of any infile). Any new first-order thunks
can then be executed, and the process continues until the
original thunk is executed.

3.3.2 Executing thunks remotely

When outsourcing computation, gg-force proceeds as
above, with the exception that actual thunk execution
happens on a remote computer (either a persistent com-
puter or a cloud function). Before executing the thunk,
gg needs to ensure that the thunk’s infiles are available
in the foreign environment. The system maintains a local
representation of a remote object store—in our implemen-
tation, an Amazon S3 bucket. Every time it uploads a file
(named by hash), it records this fact to the local object
store so it will not need to re-upload it subsequently.



To remotely execute a thunk on AWS Lambda,
gg-force first uploads any missing infiles to the remote
object store, then invokes a lambda function with the
thunk in the HTTP POST payloadE The lambda function
looks at its local filesystem (which may contain infiles left
over from a previous invocation), deletes any files that are
not included as infiles to the current thunk, downloads any
missing infiles from S3 (the remote object store), executes
the function, and uploads the output to S3, named with its
hash. The lambda function also responds, via HTTP, with
the SHA-256 hash and size of the output. The contents
of the output are not downloaded to the user’s local ma-
chine; only the hash, so that the referencing thunks can
be rewritten in terms of this output.

Remote execution on a persistent host is similar: we
created a CGI script that implements the AWS Lambda
interface and run it with the Apache webserver. When
executing thunks on AWS Lambda, occasionally a thunk
will require infiles bigger than the lambda’s filesystem
can accommodate. This typically happens during a final
linking step; e.g., linking the 11vm compiler requires more
than two gigabytes of infiles, compared with a limit of
500 MB for the lambda’s filesystem, which also must
accommodate the output. In these cases, gg-force uses
a persistent host as the backup “overflow” server. The
reason for the “size” field in the thunk infiles structure is
to allow gg-force to predict this situation in advance.

Implementation detail. We wrote routines in C++ to
speedily upload and download files from S3 using sev-
eral parallel HTTPS connections. Within each connection,
these routines pipeline the HTTP requests (e.g. the up-
loaded files), uploading 32 files back-to-back without
waiting for a response in between each one. We have
found that S3 allows up to 100 pipelined requests in a row.
This pipelining makes a considerable improvement in S3
upload and download throughput when transferring many
files, even compared with Amazon’s C++ SDK.

3.4 Collaborative use of gg

We envision that deployments of gg may collaborate in
their caching of objects by hash and memoization that a
particular thunk x evaluates to output y, so that no two
users need run the same computation twice.

Many entities build a lot of software—e.g., continuous
testing infrastructure like Travis-CI, and projects like De-
bian, Ubuntu, and Fedora. It would be convenient, and
would further improve the speed of compilation, if no user
needed to rebuild a file that had already been compiled
once by one of these organizations. At the same time, it

2We created different lambda functions for each combination of
executables, so the executables would already be available when the
lambda starts and would not need to be re-downloaded from S3.

could be risky to blindly trust another entity’s compiler
output, in case the compiler has been compromised.

We expect that entities that execute thunks might pub-
lish two kinds of statements:

1. Content-addressed storage assertions. A crypto-
graphically signed statement that, “The file with hash
x has the following contents.”

2. Memoization assertions. A cryptographically
signed statement that, “The thunk with hash x has a
value with hash y.”

In both cases, a skeptical organization can double-
check the assertion. If an entity makes a mistake, lies,
or is compromised, it will be possible to prove to the
world that it should no longer be trusted, because it will
have issued a signed statement that is demonstrably false.
One is unlikely to double-check every memoization as-
sertion, because doing so is equivalent to simply forcing
the thunk. We expect that users—even those interested in
collaborative use of gg—will be more cautious in whom
they trust to make memoization assertions vs. storage
assertions.

4 Evaluation

To evaluate gg, we measured its start-to-finish build times
under multiple scenarios with several unmodified open-
source packages. We compared these times with existing
build tools under the same scenarios.

Our findings show that for local builds, gg achieves
either similar performance to the underlying build system,
or in some cases (FFmpeg and Mosh), gg achieves sig-
nificantly higher performance by inferring finer-grained
information about dependencies, unlocking more paral-
lelism. For distributed builds of large projects (Inkscape,
LLVM) outsourced from a low-powered client (a 4-core
EC2 VM) to the cloud, gg was 3.5% to 4X as fast as out-
sourcing compilation to a remote 64-core machine, and
1.2X to 3X as fast as running make -j64 locally on the
64-core machine itself.

4.1 Evaluation set

To benchmark gg’s performance and that of comparison
schemes, we collected a selection of open-source pro-
grams written in C or C++. These packages cover a variety
of build complexity, parallelization levels, and size. This
set of programs consisted of mosh [38], protobuf [46],
11vm [36], ffmpeg [20], openssh [42], cmake [13], and
inkscape [30]. No changes were made to the underlying
build system of these packages.



4.2 Baselines

For each package, we measured the start to finish build
time in three different scenarios as the baseline for local
and distributed builds:

1, 2. make, make (64): In these two scenarios, the pack-
age’s own build system was executed on a single
core, or with up to 64-way parallelism (e.g. make
-j64). For both, the build was done on a 64-core
EC2 VM (m4.16xlarge) and no remote machines
were involved.

3. Icecream (64+1): The package was built on a 4-
core client (m4.xlarge), outsourcing to a 64-core
VM in the same region. In order to achieve a fair
comparison, the number of local jobs (executed on
the master) was limited to oneE

4.3 gg’s benchmarks

We conducted the following experiments for each package
to evaluate gg:

1. gg (64): The package was built locally using 64-way
parallelism using gg.

2. gg-remote (64): With the same setup as the Ice-
cream (64+1) experiment, the target package is built
in a distributed fashion using gg. No jobs were exe-
cuted on the client machine.

3. gg-\ (64): The build was initiated on a 4-core client
machine, and thunks were executed on AWS Lambda
with a maximum of 64 workers running at a time. A
standby EC2 VM acted as the “overflow” worker for
thunks whose total infile size was was too big for a
lambda, as described in Section

4. gg-h (1000): The package was built on AWS
Lambda using gg with 1000-way parallelism, again
with a standby EC2 VM for thunks too large to exe-
cute on AWS Lambda.

We ran each scenario on each package at least 5 times.
Figure|3 shows the median timings.

Cached builds. To evaluate the effectiveness of our
caching mechanism, we compared gg against ccache.
Starting with an empty cache, the package was built once
to populate the cache. Then, after cleaning, the build was
repeated again, this time on a “hot cache.” Results were
almost identical between gg and ccache (not shown be-
cause of space limits).

Dependency inference performance. As described in
§ 3| unlike the other approaches, gg separates the depen-
dency inference and execution stages. Figure |4 shows the
running times of gg-infer on a completely cold cache

3icecc does preprocessing and linking locally, so it is not possible

to fully outsource the build job.

for each package, running the native build system through
model substitution. These times are significant in the case
of larger packages, and indicate that the build system ma-
chinery itself (e.g. recursive make), as well as the time
required to hash the contents of all build dependencies to
capture them in thunks, can consume a significant amount
of CPU and I/O.

The overhead is less severe in the case of an incremen-
tal build, or without a cold cache, because gg caches the
hashes and dependencies of files on disk and the under-
lying build system will not attempt to re-build every file.
However, it does suggest a significant weakness to gg’s
approach of attempting to retain compatibility with the
underlying build system, rather than asking software au-
thors to discard make or cmake in favor of newer, more
efficient build systems (e.g. Bazel). In future work, we
plan to make it possible to adapt inferred thunks into a
“build system template” that can be distributed with or
alongside these open-source packages.

4.4 Discussion of evaluation results

In building mosh and FFmpeg locally, gg is roughly 2 X
faster than make running with the same degree of available
(64-way) parallelism. make’s performance is hindered by
spurious dependency edges. This indicates that gg’s fine-
grained approach is effective in reducing the build time
for packages that consist of many small modules. Some
build systems, like automake, generate separate build
recipes for each module, and they build each module one
after another, even though there may be no dependencies
between each of these modules. By extracting the real de-
pendencies, gg is capable of extracting more parallelism
than the original build system.

Small packages. Although AWS Lambda allows the user
to execute thousands of jobs at once, smaller software
packages usually do not have this degree of parallelism.
Nonetheless, these programs can still benefit from other
gg features, such as global caching.

Figure[5 shows the timings from a mosh build using gg
on AWS Lambda. For the preprocess stage, most of the
workers’ time is spent on downloading the dependencies—
preprocessing a single file may depend on a few hundred
header files. Because preprocessing happens for all the
files simultaneously, its effect on the start-to-finish build
time is negligible.

Larger packages. The benefits of using gg in building
larger software packages are more significant. As an exam-
ple, £fmpeg has about 1500 files that require compilation;
given enough cores, almost all of that compilation can
happen in parallel. Figure|6|shows the thunk start and
end timings for ffmpeg and indicates that at a certain
point, increasing parallelism yields diminishing returns;



Local Distributed
make make (64) gg (64) Icecream (64+1)  gg-remote (64) gg-A (64) gg-\ (1000)
Mosh 29s 11s 05s 12s 12s 10s 12s
OpenSSH 36s 02s 03s 06s 27s 13s 15s
CMake 04m 31s 17s 15s 28s 49s 33s 25s
Protobuf 05m 26s 20s 228 23s 41s 40s 33s
FFmpeg 09m 45s 40s 23s 01m 36s 01m 36s 59s 35s
Inkscape 33m 35s 01m 32s 01m 46s 05m O1s 02m 25s 02m 53s 01m 15s
LLVM 1h 16m 18s 02m 33s 02m 21s 04m 06s 03m 29s 02m 35s Olm 11s
Figure 3: Comparison of build times in different scenarios described in §4.1.
4 cores 64 cores we defined the following set of functions:
Mosh 02s 02s map(i.txt) — i.mapped: the first line of map output is a
OpenSSH 05s 03s list of offsets for partition program.
CMake 15s 09s
Protobuf 12s 03s partition(l.mapped,...,N.mapped) — Pi: partition
FFmpeg 01m 28s 36s program read the first line of the infile to find the
Inkscape 02m 33s 44s range that it should read.
LLVM 02m 45s 49s

Figure 4: Time required for gg to generate the thunks that it
will execute later, either locally or remotely.

the last four jobs are primarily serial (archiving, linking,
and stripping) and consume almost half of the total job
completion time.

Figure [3) demonstrates that for very large packages,
a high degree of parallelism can significantly improve
build times, but that serial stages continue to dominate.
gg compiles inkscape in 1 minute, 15 seconds on AWS
Lambda with a cold cache, compared with 5 minutes
when outsourced to a 64-core VM in the same EC2 region.
This is a speedup of 4X. In a truly cold client where
gg-infer must be run anew on the 4-core client to extract
the dependency graph from the inkscape build system,
the total time to build with gg (combining inference and
execution) would be 3m48 (2m33 + 1m15), about 32%
faster than outsourcing to the nearby 64-core VM.

Results for LLVM are similar, even though the single-
core build time for this project is more than double that of
inkscape. This indicates that serial steps (e.g. linking)
dominate the job completion time, as in Figure 6.

4.5 Extending gg to other applications

4.5.1 Word frequency with MapReduce

Word frequency is a classic MapReduce problem [15] and
the goal is to count the number of times that each word
has appeared in a corpus of documents. Previous work has
implemented such workloads on functions-as-a-service
infrastructure [32]. To implement this workflow using gg,
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reduce(Pi) — Ri: reduce function goes through the infile
and sums up all of the values for each key.

cat(R1,R2,R3) — out: concatenates the infiles together
to create the outfile.

Figure|7/shows the dataflow for word fequency problem
with N input files and 3 reduce workers.

4.5.2 Video encoding

Previous work has used functions-as-a-service infrastruc-
ture to run interdependent video processing tasks with
many-way parallelism [21]. To demonstrate the expres-
sive power of gg, we also implemented this scheme in
terms of thunks. The functions necessary to encode a
“batch” of video chunks were:

vpxenc(U) — C: encoding an uncompressed video to a
compressed VP8 video.

xcdec(C,S) — S’: extracting the final state of a com-
pressed video starting with a state.

xcenc(U,C,S) — Y: re-encoding the first frame of an
compressed video, starting with a state.

rebase(U,C,S,S’) —» Y': rebasing a compressed video
starting with a state, on top of another state.

In summary, the algorithm first encodes each chunk
in parallel using vpxenc() and then, in a serial process,
rebases each output on top of the state left by the previ-
ous chunk using rebase() function. FigureB shows the
dependency graph for encoding a batch of 4 chunks using
these functions.
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Figure 7: Dependency graph for a MapReduce workflow calcu-
lating word frequency, expressed in gg thunks.

5 Limitations and future work

gg has a number of important limitations that will be the
subject of future work.

The underlying build system is a bottleneck. gg infers
dependencies from the underlying build system (make,
cmake, bazel, etc.) by running it under model substi-
tution to generate thunks. In cases where the client is
weak in comparison with available infrastructure to force
thunks, this step can be a significant bottleneck. For exam-
ple, on a totally cold cache, it took 88 seconds on a 4-core
server to infer the dependencies from FFmpeg, compared
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with only 35 seconds to actually compile all of FFm-
peg with 1000-way parallelism in AWS Lambda. This
suggests a significant weakness to gg’s approach of at-
tempting to retain compatibility with the underlying build
system. In future work, we plan to make it possible to
adapt inferred thunks into a “build system template” that
can be distributed with or alongside these open-source
packages.

Often, tests are what is slow. gg’s modeling approach
only infers dependencies for programs it knows about:
the compiler, linker, archiver, etc. This is sufficient to
build a wide range of open-source programs, but often
it is the testing of these programs, not the compilation,
that is the true bottleneck. gg does not have an approach
to automatically infer the dependencies of such tests; de-
velopers would need to manually create thunks to allow
these processes to be outsourced.

Some build systems want to read intermediate data.
Build systems like the Linux kernel try to read intermedi-
ate files and, in scripts, compare them against a canonical
reference or check if they are empty. These builds must be
run under gg-mock, which pauses execution of any “non-
thunk-aware” thread that tries to read a thunk reference on
disk. However, performance of the resulting build is poor,
because thunks end up forced one-at-a-time, as the build
system gets to each in turn. We will need to implement a
system of intelligently pre-fetching thunks so they can be
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Figure 8: Dependency graph for a video-processing workflow [21], expressed in gg thunks.

forced in parallel, or persuade these developers to modify
their build systems.

5.1 Future work in serverless services

Developing and using gg on AWS Lambda has led us
to several observations about improving serverless ser-
vices [4, 6, 23] and frameworks [41,/43, 47] for this ap-
plication domain.

Storage. AWS Lambda functions can access long-term
storage and database services, such as AWS S3 and Dy-
namoDB [2, 5]. The scalability and durability of these
services makes them appropriate for the input and out-
put data of serverless computations. The missing com-
ponent for applications like gg is ephemeral storage that
allows communication of intermediate data between func-
tions. The scalability, speed, and pricing for capacity and
IOPS should match the characteristics of serverless com-
putation, and referenced objects should automatically be
garbage-collected when a job terminates.

Scheduling. Lambda functions are currently scheduled
first based on the availability of processor and memory re-
sources and next based on code locality (container already
available or running on a host) [26]. For applications like
gg, it is also important to consider data locality. The
scheduler should steer each task towards functions that
store or have fast access to its input data—or at least, a
large set of the input data. The explicit data dependencies
encoded in thunks allows for an intelligent scheduler that
could match tasks to their data, prefetch data, or trade
off communication overheads to the cost of waiting for
resources to become available in a container with data.

Safety. As we expand the scope of lambda uses, it is
important to provide mechanisms that constrain what a
single lambda or an ensemble of lambdas can do, with
whom they can communicate, and what resources they can
consume and for how long (i.e., how much money they
can spend and over how much time). This may involve
using and extending existing mechanisms, both local like
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cgroups and pledges [11,14], or cluster-wide like AWS
TAM and limits [3].

Multiple applications and users. It will be useful to
develop techniques that allow multiple applications and
multiple users to share a fixed set of lambda resources.
Current approaches such as quotes on the number of con-
currently active lambdas can lead to deadlock among
contending applications, and failures. It may be necessary
to introduce priority and admission-control mechanisms
for lambda-based frameworks like gg.

6 Conclusion

In this paper, we described gg, a system for executing
interdependent software workflows across thousands of
short-lived functions that run in parallel on public cloud
infrastructure. We demonstrated gg’s utility and perfor-
mance benefits in compiling large software projects with
thousand-way parallelism, and we expressed prior work
in general-purpose serverless computing [21,/32] in terms
of gg’s thunk abstraction, so it can be run by the same
execution engines.

As a computing substrate, we suspect cloud functions
are in a similar position to Graphics Processing Units in
the 2000s. At the time, GPUs were designed solely for
3D graphics, but the community gradually recognized
that they had become programmable enough to execute
some parallel algorithms unrelated to graphics. Over time,
this “general-purpose GPU” (GPGPU) movement created
systems-support technologies, and today non-graphics
GPGPU applications are a major use of GPUs: physi-
cal simulations, database queries, and especially neural
networks and deep learning.

Cloud functions may tell a similar story. Although in-
tended for asynchronous Web microservices, we believe
that with sufficient systems, the same infrastructure is
capable of broad and exciting new applications. Just as
GPGPU computing did a decade ago, general-purpose
lambda computing may have far-reaching effects.
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